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Improvements of the Patel-Teja Equation of State 1 

N.  C. Patel  2'3 

The Patel-Teja equation of state has been improved by modifying the tem- 
perature dependence of the attractive term to give simultaneous representation 
of vapor pressure, liquid density, and liquid heat capacity data for polar and 
nonpolar compounds. For many high-boiling industrially important com- 
pounds, the combination of available heat capacity and vapor pressure data 
provides a thermodynamically sound method of establishing the temperature 
dependence of the attractive term in the most practical range of 273-523 K. The 
performance of the equation of state is greatly improved if the critical pressure 
is used as the adjustable parameter to correlate the thermodynamic properties 
under the conditions of interest. 

KEY WORDS: cubic equation of state; heat capacity; liquid density; mixing 
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librium; vapor pressure. 

1. I N T R O D U C T I O N  

Over the last two decades, cubic equations of  state have become very pop-  
ular in process design. These equations are commonly  used to represent 
phase equilibria in the form of  vapor- l iquid  equilibrium, l iquid- l iquid-  
vapor  equilibrium, and solubility of  gases in liquids. Their use has been 
extended from simple nonpolar  and slightly polar  components  to highly 
polar  componen ts  previously handled by the use of  activity coefficient 
models. Two fundamental  improvements  have helped to increase the 
correlative and predictive power  of  simple cubic equations of  state. First, 
the improvement  in the temperature dependent term, often called the 
"alpha (oc)" term, has led to better .matching of  the pure componen t  vapor  
pressure curve along the saturation line and, second, the improvement  in 
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the representation of mixtures through better and more versatile mixing 
rules has led to correlation of vapor-liquid equilibrium data with the same 
quality usually found with the activity coefficient approach. Both of these 
topics have received significant attention in the last few years [ 1-3 ]. 

The main purpose of this work is to provide a more flexible ~ term 
which can be used to improve the correlation of experimental data for a 
variety of industrially important compounds. For this purpose a previously 
developed cubic equation of state is used [4]. This equation, which is often 
referred to as the Patel-Teja equation or the P-T equation, has several 
advantages over other popular equations of state [5-8].  It is possible to 
reduce the P-T equation to some of the most popular equations of state, 
e.g., the Soave-Redlich-Kwong (S-R-K) [9],  the Peng-Robinson (P-R) 
[10], and the Redlich-Kwong (R-K) [11]. The P-T equation also 
provides reasonably accurate values for liquid-phase properties including 
density and enthalpies, and this is done without violating the two classical 
constraints, which require the first and second derivatives of pressure with 
respect to volume to be zero at the critical point. The new temperature 
function introduced in this work is intended to improve vapor pressure and 
related quantities such as enthalpies, entropies, and Gibbs free energies. 
Heat of vaporization is also improved as a direct consequence of the 
Clausius-Clapeyron relationship [ 12]. With the new temperature function, 
it is now possible to include low-temperature liquid heat capacity data with 
vapor pressure and liquid density data to regress equation-of-state 
parameters. It is also possible to extend the use of the equation of state to 
calculate vapor pressure in the temperature range where experimental 
measurement of vapor pressure is difficult but the heat capacity data can 
be easily measured, e.g., high-boiling compounds at or near room tem- 
perature. The use of liquid heat capacity data is not new; Ambrose and 
Davies [ 13] and King and A1-Najjar [ 14] have used low-temperature heat 
capacity data to extend vapor pressure equations, and recently Twu et al. 
[2] recommended the use of heat capacity data to improve the tem- 
perature dependence of the S-R-K equation of state. 

2. A NEW a FUNCTION 

Over the last decade, several functional forms have been proposed for 
the 0c term in the cubic equation of state (see Appendix). Many of these 
forms have been shown to give the correct asymptotic behavior for the 
vs temperature curve to overcome the deficiency present in the original 
form used by the S-R-K, P-R, P-T, and other popular equations of state. 
As mentioned elsewhere [ 1-3, 15 ], the original functional form containing 

.only one adjustable parameter is good for the reduced temperature range 
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of 0.7 and higher but gives large errors at lower reduced temperatures. To 
improve the accuracy of the vapor pressure representation, two or more 
adjustable parameters are required to describe the a vs temperature rela- 
tionship. A real advantage of using cubic equation of state to represent the 
vapor pressure curve lies in the fact that other thermodynamic properties 
can be calculated without additional parameters, e.g., heat of vaporization, 
liquid enthalpy, liquid heat capacity, etc. 

In Fig. 1, three a equations are plotted for hydrogen. For Twu et al. 
and Melhem et al., the function behaves correctly at higher temperatures. 
For Gibbons and Laughton, the function approaches zero and becomes 
negative at higher temperature. This is not a desired behavior and needs to 
be fixed to avoid calculation of physically impossible negative values for a. 
As shown, the extrapolation is different for all three equations. To improve 
the overall accuracy of the Gibbons and Laughton function and to allow 
difficult compounds to be handled, the following function is proposed for 
the ~ term. 

o~( T) = 1 + ct( T ~ -  1)+ C2(X/~r-- 1)+ c3( T ~ -  1) (1) 

Here c~, c2, c3, and N are pure component constants and Tr = T/Tc is a 
reduced temperature. 

The last term in Eq. (1) is intended to improve the accuracy in vapor 
pressure and heat capacity data. It can also be used to give proper 
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asymptotic behavior at higher temperatures for supercritical components. 
For example, setting c~=c_,=0, c3=1, and N = - ½ ,  the function is 
reduced to the original R-K form, which is asymptotically correct and 
works well for the supercritical region (see Fig. 1). For most compounds, 

and doc/dT approach zero at a temperature outside the range of interest 
for process design and it is not necessary to fix the asymptotic behavior. 
However, for supercritical components such as hydrogen, the asymptotic 
behavior should be fixed so that realistic values for ~ and doc/dT can be 
obtained as shown in Fig. 1. This can be done either by fitting Eq. (1)'to 
the 0t values obtained from the saturation curve by equating fugaeities of 
vapor and liquid phases and combining with the values of 0c generated from 
the R-K form (~ = T~ -°'5) at the higher reduced temperatures (Tr = 10, 15, 
20, etc.) or by simply using the R-K form as shown in Fig. 1. 

When the new 0c term [ Eq. (1)] is combined with the P-T equation of 
state, typical results indicate a deviation of 1% or less in the vapor 
pressure curve, 2 % or less in the liquid density curve up to the reduced 
temperature of 0.85, 2% or less in the heat of vaporization up to the 
reduced temperature of 0.90, and 3 % or less in the liquid heat capacity 
curve below the normal boiling point. The actual results are highly depend- 
ent on the quality of the experimental data and the critical parameters 
used. For illustrative purpose, parameters c~, c,_, c3, N, and (c are listed in 
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Fig. 2. Vapor pressure and liquid heat capacity of ethylene glycol. Com- 
parisons of three forms of ~ using the Patel-Teja equation of state. 
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Table I for selected components. Note that the last term in Eq. (1) is not 
required for many components. Deviations in vapor pressure, liquid 
volumes, and liquid heat capacity are also shown. DIPPR [21 ] equations 
were used as a substitute for actual experimental data. Details of DIPPR 
correlations and experimental data can be found in the DIPPR databank 
[21]. To show the effectiveness of Eq. (1) against other forms of the 0c 
term, results are plotted in Fig. 2 for vapor pressure and liquid heat 
capacity. As can be seen, Eq. (1) gives excellent results for both vaPor 
pressure and liquid heat capacity of ethylene glycol. The P-T equation of 
state was used in all three cases with the same value of ft.  

Results are also presented in Table II in the form of deviations for the 
three properties used in the regression. As can be seen, the use of the last 
term in Eq. (1) does not always result in the best overall fit, however, the 
use of the last term always improve the fit of the vapor pressure data. This 
shows the danger of overfitting the vapor pressure curve when liquid heat 
capacity data are not used in the regression. The 0~ forms suggested by 
Melhem et al. and Twu et al. are not shown in Table II because they were 
not implemented in the computer program written for the P-T equation of 
state. Instead, these two forms are compared with the other forms in 
Table III. Results are given for the sum of squared deviation in the 
representation of the ~ vs temperature relationship for ethylene glycol, 
water, and acetone. The experimental value of ~ was obtained at every 

Table II. Absolute Average Percentage Deviations in Vapor Pressure (Aps), Liquid Molar 
Volumes (A VI), and Liquid Molar Heat Capacity (ACp) for Three Forms of ct Equations 

Component 

Soave [9] Gibbons et al. [ 15] Equation ( 1 ) 

A P  s A V  I 4Cp  A P  s z l V  t ACp ziP s A V  I ACp N"  

Ethylene glycol 12.8 0.9 4.7 4.0 0.7 1.6 0.27 0.8 1.2 3 
Ethylene oxide 1.9 1.0 8.8 0.4 1.0 1.4 0.05 1.0 7.3 2 
Water 0.7 1.4 2.2 0.2 1.4 1.2 0.1 1.4 2.3 2 
Ethylene 1.1 0.8 3.1 0.9 0.9 3.5 0.12 0.8 2.0 2 
Carbon dioxide 0.2 0.9 1.7 0.2 0.9 3.0 0.08 0.9 21.0 2 
Hydrogen sulfide 0.5 1.1 7.4 0.3 1.1 4.4 0.12 1.1 1.6 10 
Methane 1.1 1.7 4.7 0.3 1.6 5.4 0.08 1.6 1.2 6 
Acetone 1.3 1.4 6.2 0.3 1.4 3.6 0.2 1.4 1.5 - 0.5 
Nitrogen 0.7 1.4 2.2 0.4 1.4 3.0 0.05 1.3 4.1 2 

° Values for N in Eq. ( 1 ). Except for ethylene, the value of N = 2 is used only for comparison 
purposes (it is not the optimum value). 
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Table IIL Comparison of Different ~ Forms for Water, Ethylene Glycol, and Acetone ° 

SSD x 10  6 

Ethylene glycol Water Acetone 
form ((c = 0.2768) ((c = 0.2695) ((~ = 0.2817) 

Soave [ 9 ] 25365 24.37 622.4 
Gibbons et al. [ 15] 1448 4.18 46.14 
Equation ( 1 ) 3.5 1.79 13.73 
Melhem et al. [ 1 ] 2904.8 2.52 55.99 
Twu et al. [21 3156.1 2.09 24.32 

"SSD, sum of squared deviation. It is given by the equation SSD = ~7= ~(~¢xp--a~l¢) 2. SSD 
is the actual least-squares measure of the curve fitting. Experimental values of ~ were derived 
from experimental vapor pressure data by equating fugacity of vapor and liquid phases 
along the saturation curve with a fixed value of (¢. Experimental vapor pressure data were 
taken from DIPPR (only the "accepted" data in the DIPPR file were used). In Eq. ( 1 ), N = 3 
was used for ethylene glycol, N = 2 for water, and N = -0.5 for acetone. 

temperature using experimental vapor  pressure data  from D I P P R .  The 
value of  0~ was iterated until the fugacities of  the vapor  and liquid phases 
were equal. Once the a vs temperature curve was established, different 
forms of  the ~ equations were tested using nonlinear regression program.  
Results shown in Tables II and III  show that Eq. (1) is more  flexible than 
the other  forms of  the a equations. This is not  surprising since it contains 
four adjustable parameters and it is not  constrained to give proper  
asymptot ic  behavior,  which is important  for supercritical components .  For  
water and acetone, good  results are obtained by all a forms, however, for 
ethylene glycol which is a high-boiling liquid with some uncertainty in the 
critical parameters,  Eq. (1) is better than the other forms. 

3. S E N S I T I V I T Y  O F  T H E  C R I T I C A L  P A R A M E T E R S  

Critical parameters  such as the critical pressure (Pc) and the critical 
temperature (To) play an important  role in defining the predictive and the 
correlative capabili ty of  a given equation of  state. Since classical constraints 
require the first and the second derivative of  pressure with respect to 
volume to be zero at the critical point, we need to have a knowledge of  the 
critical point  or  Tc and Pc- Unfortunately,  many  industrially impor tant  
c o m p o u n d s  tend to decompose at or  near their normal  boiling points. The 
critical parameters  are often estimated by one of  the available group con- 
tr ibution methods,  e.g., Lydersen [16] ,  Joback [ 17], and Ambrose  [18] .  
The uncertainty in the critical parameters may  be the main cause of  poor  
calculation of  derived thermodynamic  properties such as heat capacity, 
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enthalpy, and fugacity coefficient. For simultaneous correlation of several 
thermodynamic properties, it is often useful to treat one of the critical 
parameters as an adjustable variable. If all properties are improved in the 
practical range of operation, the derived critical parameter can be con- 
sidered to be consistent with the measured data and deemed useful for 
process design. Experience has shown that the critical pressure is a better 
choice than the critical temperature, especially since the available estima- 
tion methods for the critical temperature are better than those for the 
critical pressure [22 ]. 

In Table I, results of using two sets of critical parameters are shown 
for diethanolamine and acetic anhydride. As can be seen, better results are 
obtained, depending on the choice of the critical parameters used. As 
shown in Table I, the values of Pc and Tc given by Ambrose and Ghiassee 
[ 19] for acetic anhydride are much more consistent than the ones reported 
by Vespignani [20] when compared with the vapor pressure data 
measured for this compound. Similarly, the criticals reported by DIPPR 
[21] for diethanolamine appear to be inconsistent, since large deviations 
are obtained in the calculated liquid heat capacity. 

4. CONCLUSIONS 

A new temperature dependence has been proposed for the e term of the 
Patel-Teja equation of state. The new model is capable of simultaneously 
representing vapor pressure, liquid density, and liquid heat capacity data for 
polar and nonpolar compounds. For most compounds, data are correlated 
with sufficient accuracy for process design. 

For compounds with unreliable critical parameters, the performance of 
the equation of state is improved by using the critical pressure as an 
adjustable parameter. In this way, it is also possible to detect any incon- 
sistency in the critical parameters. 

APPENDIX 

The Modified Patel-Teja Equation of State 

p = m  R T  a[ T] 

V - b  V ( V + b ) + c ( V - b )  

R2T~ 

= & - - y 7  r], 
b = £2b RTc 

Pc ' 
c = (2 c RTc 

Pc 

(AI) 
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where ,  ~t'~a, ~¢"~b, and ~¢ are functions of the predicted critical compressibility 
factor denoted (c- The following constraints at the critical point are applied 
to the equation of state, Eq. (A1). 

=0, =o, Rrc 

With the critical constraints, the following relationships are established 
among the three dimensionless parameters Oa, Oh, and ~ and the predicted 
critical compressibility factor (~. 

~ =  1 - 3 ( ~  

~ . = 3 ( ~ + 3 ( 1 - 2 ( ¢ )  Qb+g2b+ 1 -3 (~  

~¢"~b is obtained by solving for the smallest positive root of the following 
cubic equation: 

O 3 + (2 - 3(¢) g?b + 3(~C2b __(3c__ 0 

For co[ T], the following function of reduced temperature is proposed: 

o c [ T ] = l + c , ( T r - 1 ) + c 2 ( x / / - ~ - l ) + c 3 ( r ~ - l )  (A2) 

Equation (A2) without the last term was originally proposed by Gibbons 
and Laughton [15]. Equation (A2) was used with the equation of state, 
Eq. (A1), to correlate experimental data for vapor pressure, liquid density, 
and liquid heat capacity. Constants c~, c2, c3, N, and (~ are given in 
Table I for selected components. Other forms for ~[ T] suggested by Soave 
[9], Melhem et al. [1], and Twu et al. [2] are given below. 

Soave [9]" 0c[ T] = [ 1 + cl(1 - T°5)] 2 

Melhem et al. [ I ] :  ~[T] = e x p [ c l ( 1 -  Tr)+ c 2 ( I -  x / ~ )  z] 

Twu et al. [2]: 0c[ T] ---- --rTC3(C2-I)exp[cl(1 _ T7C3)] 

The form suggested by Soave was used in the original P-T equation of  
state. 
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